705. Design HashSet
https://leetcode.com/problems/design-hashset/
Approach
Use single array (the troll way).
Create a table one more than the MAX_INPUT for the key and use a simple key % TABLE_SIZE
to hash the key.
Solution
1class MyHashSet { 2public: 3 bool *hashtable; 4 int SIZE = 1000001; 5 /** Initialize your data structure here. */ 6 MyHashSet() { 7 hashtable = new bool[SIZE]; 8 fill(hashtable, hashtable + SIZE, false); 9 } 10 11 void add(int key) { 12 hashtable[key%SIZE] = true; 13 } 14 15 void remove(int key) { 16 hashtable[key%SIZE] = false; 17 } 18 19 /** Returns true if this set contains the specified element */ 20 bool contains(int key) { 21 return hashtable[key%SIZE]; 22 } 23};
Time Complexity
O(1)
Space Complexity
O(N)
Better design?
Using a single array is perfectly fine from a CP programmer view in my opinion, but if you're tackling this question as for preparing a coding interview, then you might need to comp up with a better solution.
- BST solution - https://leetcode.com/problems/design-hashset/discuss/179164/C%2B%2B-97.97-without-a-massive-array-or-using-a-map-BST
- 3 different approaches - https://leetcode.com/problems/design-hashset/discuss/773006/C%2B%2B-3-Approaches
Basic Hash Implementation
1class MyHashSet { 2private: 3 int prime; 4 vector<list<int>> table; 5 6 int hash(int key) { 7 return key % prime; 8 } 9 10 list<int>::iterator search(int key) { 11 int h = hash(key); 12 return find(table[h].begin(), table[h].end(), key); 13 } 14 15public: 16 /** Initialize your data structure here. */ 17 MyHashSet() : prime(10007), table(prime) {} 18 19 void add(int key) { 20 int h = hash(key); 21 if(!contains(key)) 22 table[h].push_back(key); 23 } 24 25 void remove(int key) { 26 int h = hash(key); 27 auto it = search(key); 28 if (it != table[h].end()) 29 table[h].erase(it); 30 } 31 32 /** Returns true if this set contains the specified element */ 33 bool contains(int key) { 34 int h = hash(key); 35 return search(key) != table[h].end(); 36 } 37};
Time Complexity
O(N), average O
Space Complexity
O(N)